
J
H
E
P
0
9
(
2
0
0
7
)
1
1
7

Published by Institute of Physics Publishing for SISSA

Received: July 17, 2007

Revised: September 13, 2007

Accepted: September 14, 2007

Published: September 26, 2007

The interface free energy: comparison of accurate

Monte Carlo results for the 3D Ising model with

effective interface models

Michele Caselle

Dipartimento di Fisica Teorica dell’Università di Torino and I.N.F.N.,
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1. Introduction

Interfaces play an important rôle in various fields of natural sciences. In soft condensed

matter physics, in chemistry and in biology, interfaces separating two different media, for

instance two different magnetization domains, or two different fluids, or a fluid and its

vapour, are studied. The properties of such interfaces might be described by a unique

effective model such as the capillary wave model [1].

Our motivation to study interfaces originates from the theory of high energy physics.

An interface with given boundary conditions can be associated with the world-sheet of a

fluctuating flux tube in the confinement regime of a gauge theory. For intermediate and

long distances between the sources, the relevant degrees of freedom for a system of confined
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quarks are supposed to be independent of the short distance gauge interaction, and might

be modelled by string fluctuations (effective string picture).

The simplest set-up for a numerical study of interfaces is provided by the Ising spin

model on a simple cubic lattice. Its duality with respect to the Z2 gauge model [2] maps

the ordered phase to the confined regime.

The classical Hamiltonian of the Ising spin model reads:

H({J}, {h}, {s}) = −
∑

〈xy〉
J〈xy〉sxsy −

∑

x

hxsx , sx ∈ {1,−1} , (1.1)

where x = (x0, x1, x2) is a site of the lattice, and 〈xy〉 denotes a pair of nearest neighbours

on the lattice. Here and in the following, the lattice spacing a is set to 1, and we shall

always consider the case of a vanishing external field hx = 0, ∀x. The site coordinates run

over 0 ≤ xi ≤ Li − 1, where i ∈ {0, 1, 2} label the three directions.

In the case of periodic boundary conditions we take J〈xy〉 = 1 for all links 〈xy〉. Anti-

periodic boundary conditions, say, in the direction 0, can be implemented imposing J〈xy〉 =

−1 if x = (L0 − 1, x1, x2) and y = (0, x1, x2), and J〈xy〉 = 1 otherwise.

The partition function is obtained as the sum over all configurations {s} of the Boltz-

mann factor:

Z{J}(β) =
∑

{s}
exp (−βH({J}, {s})) , (1.2)

where β = 1/(kBT ) is the inverse of the temperature of the three-dimensional classical spin

model.

The goal of our work is to study an interface between the phases of positive and negative

magnetization in the low-temperature regime of the spin model — which corresponds to

the confining regime of the gauge theory.

Such an interface can be forced into the system by appropriate boundary conditions.

For instance, one could constrain the spins at x0 = 0 to take the value −1 and those at

x0 = L0 − 1 to +1; here, however, we use anti-periodic boundary conditions in 0-direction,

because the finite L0 effects are smaller and better understood than for Dirichlet boundary

conditions.

In recent works [3 – 12] we studied interfaces with Dirichlet boundary conditions in

one direction and periodic boundary conditions in the other direction: via duality, this

corresponds to a Polyakov-loop correlator in the gauge model.

The comparison with the Nambu-Goto effective string model resulted in unexpected

discrepancies at subleading orders. While finite L2 corrections, in the direction with peri-

odic boundary conditions, are described well by the effective theory, the finite L1 correc-

tions, in the direction of the Dirichlet boundary conditions, show unexpected deviations.

In order to further investigate this issue, we pick up again the work on interfaces with

periodic boundary conditions in both directions. In [13 – 15] such a comparison had been

performed for square interfaces L1 = L2; in these studies, the numerical values of the

interface tension were taken from [7].

In the present work, our results for the interface free energy allow for an independent

determination of the interface tension, which is computed in technically quite a different
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way with respect to [7]; the consistency of the two results provides a non-trivial check of

their validity.

We obtain results for a large range of the inverse temperature β, allowing to study

possible scaling corrections. Furthermore, we also compute the interface free energy for

L1 6= L2 for a large range of u = L1/L2: this enables us to compare with the non-trivial

dependence on u, which is predicted by the effective interface models.

Finally, the results for the interface tension are also used in combination with a series

analysis of the second moment correlation length in the high temperature phase. This

yields a precise estimate of the universal amplitude ratio:

R+ = f2
2nd,+σ0 , (1.3)

where the amplitudes are defined by σ ≃ σ0(−t)µ and ξ2nd ≃ f2nd,+t−ν . Here, σ is the in-

terface tension, ξ2nd the second moment correlation length in the high temperature phase,

t = (T − Tc)/Tc the reduced temperature and ν, µ = 2ν the critical exponents of the cor-

relation length and the interface tension, respectively. The result for R+ can be compared

e.g. with results obtained from experiments on binary mixtures.

We also update the estimate for:

m0++/
√

σ , (1.4)

where now the error is dominated by the estimate of the mass m0++ of the 0++ glueball.

Note that under duality the interface tension of the Ising spin model is equal to the string

tension of the Z2 gauge model and the exponential correlation length in the low temperature

phase of the Ising spin model is equal to the inverse mass of the 0++ glueball in confined

phase of the Z2 gauge model. While there is no direct experimental particle physics rele-

vance of this result, it is interesting for theoretical reasons to compare m0++/
√

σ obtained

from different gauge theories. Finally we also provide an updated estimate of the finite

temperature transition Tc/
√

σ. Note that here we refer to the temperature of the two-

dimensional quantum field theory. Its temperature is given by T = 1/(aL0) and should not

be confused with the temperature of the three-dimensional classical system defined above.

In the following we shall denote the critical value of L0 by Nt; i.e. Tc = 1/(aNt).

The content of this paper is the following: In section 2 we define the interface free

energy for finite interface area L1 × L2 and finite transverse size of the system L0. Next,

in section 3, we briefly summarize the predictions for the dependence of the interface free

energy on (L1, L2), according to an effective string-like description. In section 4 we present

our numerical method to compute the interface free energy. Our results for square and for

rectangular interfaces are presented in section 5, while section 6 contains our results for

the universal amplitude ratios. A summary and our conclusions are given in section 7. The

numerical integration methods are presented in the appendix A.

2. Definition of the interface free energy

The basic quantity that we shall determine numerically is the ratio between the partition

functions of the system with anti-periodic Za and periodic boundary conditions Zp. The
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purpose of this section is to provide a definition of the interface free energy in terms of this

ratio.

The ratio Za/Zp can be expressed in terms of the eigenvalues λnx of the transfer matrix

and the parity pnx = ±1 of its eigenstates: 1

Za

Zp

=

∑

n

∑

x=s,a pnxλ
L0
nx

∑

n

∑

x=s,a λL0
nx

. (2.1)

For L0 ≫ ξ, where ξ = −1/ ln(λ1s/λ0s) is the bulk correlation length or the inverse of the

mass of the theory, the partition function ratio in eq. (2.1) is dominated by the largest

eigenvalues λ0s and λ0a:

Za

Zp

≃ λL0

0s
− λL0

0a

λL0

0s
+ λL0

0a

=
1 − (λ0a/λ0s)

L0

1 + (λ0a/λ0s)L0
. (2.2)

In this regime, the so-called tunneling mass:

mt = − ln(λ0a/λ0s) (2.3)

can thus be obtained from:

mt = − 1

L0
ln

(

1 − Za/Zp

1 + Za/Zp

)

. (2.4)

Now let us relate the ratio of partition functions with the phenomenological picture of

interfaces separating the phases of positive and negative magnetisation. We assume that,

to the leading approximation, the free energy of an interface is proportional to its area.

Hence, for finite L0, in the L1, L2 → ∞ limit, there is only one interface in the system

with anti-periodic boundary conditions and none in the system with periodic boundary

conditions. Based on this scenario, the interface free energy is naturally defined as:

F (1)
s

= − ln(Za/Zp) + ln L0 , (2.5)

where the ln L0 term takes into account the “entropy” due to the fact that the interface

can be located at any point in the x0-direction.2

Note that for finite L1, L2 the value of F (1)
s depends on L0 and in particular, the limit

L0 → ∞ is not finite. This last problem is related to the fact that for sufficiently large L0,

it is favoured by the entropy to create additional pairs of interfaces.

The presence of additional pairs of interfaces can be addressed in the dilute gas ap-

proximation. I.e. we assume that the interaction of two interfaces is short ranged and that

1Eq. (2.1) can be justified as it follows: In the basis of slice configurations Σ, the matrix associated with

anti-periodic boundary conditions is given by PΣ′,Σ = δΣ′,−Σ, where −Σ means that all spins in the slice

are flipped. Since the external field h is vanishing, the transfer matrix commutes with PΣ′,Σ; furthermore,

P squares to the identity, therefore it has eigenvalues pnx = ±1. We label eigenvectors with pnx = 1 by

x=s and those with pnx = −1 by x=a. Following standard conventions λnx is decreasing with increasing n.
2In principle, one might also add a further ln 2 term, to take into account that the positive magnetization

domain can be realized on the left-hand side of the interface and the negative one on its right-hand side,

or vice versa.
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the average distance between interfaces is large compared with the range of the interaction.

For n separate, non-interacting and indistinguishable interfaces with the free energy Fs one

obtains:

ZI =
∑

n

1

n!
Ln

0 exp(−nFs) =
∑

n

1

n!
exp[−n(Fs − ln L0)] . (2.6)

The sum runs over non-negative even integers in the case of periodic boundary conditions,

and positive odd integers in the case of anti-periodic boundary conditions, and the 1
n! factor

takes into account that the interfaces are indistinguishable. Hence:

Za

Zp

=

∑∞
m=0

1
(2m+1)! exp[−(2m + 1)(Fs − ln L0)]

∑∞
m=0

1
(2m)! exp[−2m(Fs − ln L0)]

= tanh {exp[−(Fs − ln L0)]} . (2.7)

The solution of this equation with respect to Fs provides us with a second definition of the

interface free energy:

F (2)
s = ln L0 − ln

(

1

2
ln

1 + Za/Zp

1 − Za/Zp

)

. (2.8)

Upon comparison between eq. (2.8) and eq. (2.4), the tunneling mass mt can be expressed

in terms of the interface free energy as:

mt = 2exp(−F (2)
s

) , (2.9)

which confirms that the definition F (2)
s , in contrast to F (1)

s , has a finite, meaningful L0 → ∞
limit. This limit is well approximated for L0 ≫ ξ. All our simulations are done in this

regime. Note that for L0 ≪ ξt, i.e. Za/Zp close to zero, F (1)
s

is a good approximation of

F (2)
s

. For most of our simulations, this condition is satisfied.

3. Interfaces in gauge theory: the effective string perspective

In quantum gauge theory, the low-energy behaviour of a confined pair of static sources at

a distance r might be described by an effective string. In the confining regime, the flux

lines between the two sources are squeezed into a thin tube, which might be idealized as a

uni-dimensional object. The long-distance properties of the system are dominated by the

transverse fluctuations of this tube; in this regime, the excitation spectra of the fields in

the interior of the tube are expected to be much higher-lying.

Under this assumption, the properties of the system are described through a string

partition function, obtained integrating over the possible world-sheet configurations. Each

of them has the topology of a cylinder, and contributes a Boltzmann-like factor, whose

exponent is given by an effective string action.

In principle, the functional form of the latter is unknown, however it can be constrained,

by requiring that it satisfies certain self-consistency properties, and that it yields the correct

physical limit for large distances r between the two sources.
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This approach underlies the models that have been proposed by Polchinski and Stro-

minger in the 1990’s [16]:

Seff =
1

4π

∫

dτ+dτ−
[

1

a2
(∂+X · ∂−X)

+

(

D − 26

12

)

(∂2
+X · ∂−X)(∂+X · ∂2

−X)

(∂+X · ∂−X)2
+ O(r−3)

]

, (3.1)

(in which τ± are light-cone world-sheet coordinates, and a is a length scale related to

the string tension) and by Lüscher, Symanzik and Weisz already at the beginning of the

1980’s [17, 18] (see also [19, 20] for more recent developments):

Seff = σrL + µL + S0 + S1 + S2 + . . . , with: S0 =
1

2

∫

d2ξ(∂ah∂ah) , (3.2)

(where L denotes the length of the closed world-lines of the static sources, σ is the string

tension, and µ is a coefficient associated to a perimeter-like term). The construction of a

string action in the form of eq. (3.1) allows a generic conformally invariant world-sheet QFT,

with the coefficient of the various terms fixed by anomaly cancellation in any dimension

D. The action can be built by converting the path integral for the collective coordinates of

the underlying field theory to covariant form. The X field is unconstrained (and the model

still represents a generic interface in D dimensions), but the term appearing in the second

line of eq. (3.1) takes the Polyakov determinant in conformal gauge into account. Eq. (3.1)

yields an effective string model which can be expanded around the long-string vacuum.

Poincaré invariance constrains the O(r−3) term of the string spectrum to the form it has in

the Nambu-Goto model [21 – 24] (for the definition of the Nambu-Goto model see below).

In eq. (3.2), the S0 term describes a conformal model, while the other, higher-

dimensional, Sn terms are responsible for the string self-interactions. In this case, the

variable h represents a vector with D − 2 components, that describes the fluctuations

transverse to the reference plane (physical gauge). It is interesting to note that the first

term beyond S0, which is expected to be a “boundary term” [19], is actually forbidden by

open-closed string duality [20].

Among the main implications of the effective string model, we mention the existence of

a negative, O(r−1) correction to the asymptotic linear potential (the Lüscher term, which is

a Casimir effect), and the logarithmic growth of the square width of the flux tube [25 – 27].

Both aspects are related to the fact that, at leading order, the effective string fluctuations

in a D-dimensional target space can be modelled as (D − 2) free, massless bosons.

Since the infinite number of terms appearing on the right-hand sides of eq. (3.1) and

eq. (3.2) are not known a priori, it is, in general, not possible to work out all-order predic-

tions for the observables of interest.

Alternatively, one might use an explicit ansatz on the functional form of the effective

string action (consistent with the constraints mentioned above, and compatible with the

other effective models at its lowest orders): this allows to address the complete mathemat-

ical calculation for the expectation values of the physical observables, and to perform an

all-order comparison with the numerical results.
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A natural choice for the effective string action (for any world-sheet geometry) is the

area of the string world-sheet itself. For the case of a closed interface, it can be expressed

introducing the ξ coordinates over the interface, and the gαβ metric induced by the em-

bedding in the target space:

S = σ

∫

d2ξ
√

det gαβ (3.3)

(the string tension σ has energy dimension 2).

Eq. (3.3) has a natural interpretation in the context of string theory, where it repre-

sents the (Euclidean space formulation of) the model due to Nambu and Goto [28, 29],

describing the relativistic quantum dynamics of a purely bosonic string. Although it is

well-known that this model is affected by an anomaly (breakdown of rotational symmetry

out of the critical space-time dimension D = 26) and is non-renormalizable (because it is

non-polynomial), it has been studied as a possible effective description of the low-energy

dynamics of confining gauge theories. The reason is that, in the infra-red regime, the

lowest-lying degrees of freedom associated with a confining flux tube are transverse fluc-

tuations, and are expected to be modeled by a bosonic string-like dynamics; in that case,

σ represents the asymptotic value of the string tension. In particular, the geometry of an

interface with periodic boundary conditions in both directions would be associated to the

description of a torelon, i.e. a string winding around a compact target space, that has been

studied in ref. [30].

A number of implications for this effective description of confinement have been derived

theoretically and tested numerically in the literature [31 – 51].

On the other hand, in a condensed matter physics context, eq. (3.3) corresponds to

the “capillary wave model” [1]; at first order, it describes the transverse fluctuations of a

membrane as free, independent, massless modes, whereas the subleading terms introduce

(self-)interactions. In this context, σ can be interpreted as an (asymptotic) interface ten-

sion, which does not depend on the local orientation of the normal to the infinitesimal

surface element.

A perturbative expansion in powers of (σL1L2)
−1 yields the following result for the

partition function of the interface with periodic boundary conditions in both directions [44 –

46]:

Z =
λ√
u

exp(−σL1L2)
∣

∣

∣
η (iu) /η (i)

∣

∣

∣

−2
[

1 +
f(u)

σL1L2
+ O

(

1

(σL1L2)2

)]

, (3.4)

where the parameter λ can be predicted invoking a perturbative argument for the φ4 scalar

field theory in three dimensions, τ = iu = iL2/L1 is the modulus of the torus associated

with the cross-section of the system, η is Dedekind’s function:

η(τ) = q1/24
∞
∏

n=1

(1 − qn) , q ≡ exp(2πiτ) , (3.5)

and f(u) is defined as:

f (u) =
1

2

{

[π

6
uE2 (iu)

]2
− π

6
uE2 (iu) +

3

4

}

, (3.6)
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where E2(τ) is the first Eisenstein series:

E2(τ) = 1 − 24

∞
∑

n=1

n qn

1 − qn
. q ≡ exp(2πiτ) , (3.7)

In particular, for u = L2/L1 = 1 one gets f(1) = 1/4.

The interface free energy for square lattices of size L1 = L2 ≡ L takes the form:

Fs = σL2 − ln λ − 1

4σL2
+ O

(

1

(σL2)2

)

. (3.8)

This is the theoretical expectation which, in the following section, will be compared with

our numerical results for F (2)
s — see eq. (2.8).

More recently, a different approach to calculate the partition function was proposed

in ref. [15]: this method is more elegant and powerful with respect to the perturbative

expansion in powers of (σL1L2)
−1, and it takes advantage of the standard covariant quan-

tization techniques for the bosonic string. The power of this method relies in the fact that

it allows to resum the complete loop expansion for the interface partition function at all

orders, with a final result for the interface partition function in d dimensions I(d) taking

the form of a series of Bessel functions:

I(d) = 2
( σ

2π

)
d−2
2

VT

√
σAu

∞
∑

m=0

m
∑

k=0

ckcm−k

(E
u

)
d−1
2

K d−1
2

(σAE) , (3.9)

(where A = L1L2, and VT is the product of the system sizes in the transverse directions)

and a consistent, closed-form expression for the spectrum levels:

E = Ek,m =

√

1 +
4π

σL2
1

(

m − d − 2

12

)

+
4π2

σ2L4
1

(2k − m)2 , (3.10)

that agree with those presented in ref. [41].

For the case of an interface with the boundary conditions of a cylinder, an analogous

result was derived in ref. [52], while the associated energy spectrum had already been

known since the Eighties [53].

In eq. (3.10), for d = 3 and m = k = 0, the argument of the square root becomes

negative for σL2
1 < π/3. This is known as the tachyonic singularity in the effective string

framework (see [54]) and can be physically interpreted as the signature of a high temper-

ature deconfinement transition: For temperatures higher than Tc/
√

σ =
√

3/π the string

vanishes and quarks are no longer confined. Equivalently, in the dual model, the Ising spin

model, for L1 < Nt the interface tension vanishes and a transition from a ferromagnetic to

a paramagnetic phase occurs.

This interpretation was discussed for the first time by Olesen in the case of Polyakov-

loop correlators [54] and holds essentially unchanged in the present case, although the Arvis

spectrum [53] on which Olesen’s result was based is very different from the one we have in

the present case — see eq. (3.10). In fact, the lowest state (the one which drives the phase

transition) is the same in both spectra.
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Notice that one should not expect that this analysis provides an exact result for the

finite temperature transition. Indeed the Svetitsky-Yaffe conjecture [55] suggests that the

finite temperature transition in the Z2 gauge theory belongs to the universality class of the

2D Ising spin model. On the other hand, the analysis of the string picture gives mean-field

critical exponents (i.e. ν = 1/2). Once more this observation indicates that the Nambu-

Goto effective string should be better considered as a mean field description, which is

particularly effective at low temperatures and/or large distances.

4. Method to compute the interface free energy

Let us define the interface energy as:

Es ≡ Ea − Ep , (4.1)

where Ea (Ep) is the expectation value for the energy of a system with anti-periodic (re-

spectively, periodic) boundary conditions.

The internal energy of a system is given by the derivative of the reduced free energy

with respect to β:

E ≡ −∂ ln Z(β)

∂β
=

∑

{s} exp[−βH({s})] H({s})
∑

{s} exp[−βH({s})] . (4.2)

From eq. (4.2), by integration from β0 to β it follows:

− ln
Za

Zp

∣

∣

∣

∣

β

= − ln
Za

Zp

∣

∣

∣

∣

β0

+

∫ β

β0

dβ̃ Es(β̃) . (4.3)

By adding ln L0 on both sides of the equation we get:

F (1)
s

(β) = F (1)
s

(β0) +

∫ β

β0

dβ̃ Es(β̃) . (4.4)

In general it is difficult to determine free energies directly in a single Monte Carlo

simulation. On the other hand, expectation values such as Ep and Ea can be easily deter-

mined.

It is rather an old idea to compute free energies (in particular: interface free energies)

from eq. (4.4) — see, e.g., the first few references in [56].

For β0 there are different possible choices: For β < βc the interface tension vanishes,

and with a suitable choice of β0 < βc (depending on the interface area) F (1)
s (β0) vanishes

to a very good approximation. Alternatively, one might start the integration from large

values of β ≫ βc, where F (1)
s

(β0) can be obtained from the low temperature expansion.

Here we follow the strategy discussed in [56]: F (1)
s

(β0) is computed using the boundary

flip algorithm [57] at a β0 value corresponding to a Za/Zp ratio of the order of 1/10. For

such a choice, F (1)
s (β0) can be accurately determined using a moderate amount of CPU

time.

In practice, we have performed simulations for a finite number of inverse temperatures

β0 ≤ βi ≤ β to obtain values for Es(βi). The integration (4.4) must then be performed by

– 9 –
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using some numerical integration scheme. For a detailed discussion of the schemes that we

have used see the appendix A.

In principle, the numerical integration, along with its (small) systematic error, could

be avoided. One might compute:

F (β + ∆β) − F (β) = − log [Z(β + ∆β)/Z(β)]

= − log {〈exp[−∆βH({s})]〉β} (4.5)

in a Monte Carlo simulation that generates the Boltzmann distribution corresponding to

β. Here ∆β has to be chosen such that ∆β
√

〈H2〉 − 〈H〉2 is of order one, to keep the

statistical error under control. Then F (β) − F (β0) is computed by a sequence of such ∆β

steps.

For an interesting new alternative, using a generalized Jarzynski relation, see ref. [58].

Quite a different strategy to compute Fs is based on the so-called snake algorithm [59,

60]: A sequence of boundary conditions is introduced, that interpolates between periodic

and anti-periodic boundary conditions. The boundary in the 0-direction is progressively

filled with J〈xy〉 = −1. In refs. [3 – 14] we have used this approach to compute ratios of

Polyakov-loop correlators.

In the present work, however, we do not use the snake algorithm, since for boundary

conditions close to the anti-periodic boundary conditions the simulations are very difficult.

If the last layer of bonds is not completely filled with antiferromagnetic couplings J〈xy〉 = −1

yet, then it is energetically favorable that the interface sticks to the boundary. On the other

hand, there is an entropy gain, when the interface moves freely along the 0-direction. At

some stage these two effects are approximately in balance, resulting in extremely long

auto-correlation times for any known algorithm.

A major reason for using the numerical integration is that, given the large number of

lattice sizes and values of β, it provides the most efficient way to organize the simulations

and to keep the resulting data under control.

4.1 Monte Carlo simulations

In order to compute the starting-point free energy Fs(β0), we have used a variant of the

boundary flip algorithm [57] — see refs. [61, 13] for a discussion. The update is performed

using the single cluster algorithm [62]. Typically, we have performed O(107) up to O(108)

measurements. For each measurement, mostly 10 single cluster updates were performed.

In order to compute the energy for the systems with periodic and anti-periodic bound-

ary conditions, we have used a demonized local Metropolis algorithm implemented in mul-

tispin coding technique: details can be found in ref. [63]. This way, nbit systems run in

parallel in our implementation (nbit = 32 or nbit = 64, depending on the machine used).

Most simulations were performed with the local algorithm alone.

For each measurement, 12 complete update sweeps were performed. For nbit = 32 we

performed either 100,000 or 96,000 measurements for each copy of the system and each

value of β; for nbit = 64, 50,000 measurements for each copy of the system were performed.

In order to ensure equilibration, we have taken 24,000 local update sweeps. Note that this

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
7

is an overkill for the smaller lattice sizes and the larger β values. However, due to the

enormous number of individual simulations, we could not check carefully each of the runs.

Therefore we decided to use a common number of thermalization updates, that is suitable

for all of the parameter choices we considered — including the most difficult cases.

For β values close to β0, there is a non-negligible probability that more than 0 (periodic

boundary conditions) or 1 (anti-periodic boundary conditions) interfaces are formed in the

system. Most likely, the local update is not capable of generating these additional interfaces

within the given number of update cycles. Therefore, we performed single cluster updates

in addition. In this step, we could not make use of the multispin coding technique, therefore

the cluster update was performed one-by-one for the nbit systems. One single cluster update

is performed per measurement; we made no attempt to optimize the ratio of cluster and

local updates. For a discussion about a similar combination of algorithms, see ref. [64]. We

have used this method, instead of the local update only, for β = β0 + m∆β with m / 10.

Going to larger interface areas than those studied in the present work, it would be

advisable to use the interface cluster algorithm introduced in ref. [65] and further discussed

in ref. [66].

In table 1 we give a summary of our runs for square interfaces and in table 2 for the

asymmetric interfaces. In total, order of thousands individual simulations were performed.

4.2 Numerical integration

The numerical evaluation of integral (4.4) was done using standard numerical integration

schemes which are summarized in the appendix A.

All the schemes that we have considered can be written in the form:

F (1)
s

(β) = F (1)
s

(β0) +

N
∑

j=0

cj ∆β Es(β0 + j∆β) + O(N−m) , (4.6)

where ∆β = (β − β0)/N and
∑N

j=0 cj = N . For our final estimates, we have used schemes

with an O(N−4) integration error. In order to get a quantitative estimate of the integration

error, we have compared the result obtained from different schemes; e.g. scheme (A.3) and

scheme (A.4). Furthermore, we have performed the numerical integration for the theoretical

predictions of Fs(L1, L2, σ), as discussed in section 3, along with σ(β) = σ0(β − βc) × [1 +

b(β − βc)
θ + c(β − βc)], with coefficients similar to those reported below. We found that

the error of the integration is at least two orders of magnitude smaller than our statistical

error, and is hence ignored in the further analysis of the data.

4.3 Propagation of the statistical error

The statistical error ǫ of F (1)
s (β) is computed using standard error propagation:

ǫ2[F (1)
s (β)] = ǫ2[F (1)

s (β0)] + (∆β)2
∑

j

c2
j ǫ

2[Es(β0 + j∆β)] , (4.7)

where ǫ is the statistical error and the cj coefficient is given by the integration rule. In

order to get correct fits for Fs at different values of β, we have to evaluate the covariances
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of Fs at different values of β. Let us consider β2 > β1: Due to the fact that F (1)
s (β0) and

Es(β̃) with β̃ ≤ β1 are obtained in a common set of simulations, F (1)
s

(β1) and F (1)
s

(β2) are

statistically correlated.

The covariance is defined as:

cov(A,B) := 〈[A − 〈A〉][B − 〈B〉]〉 . (4.8)

In our case:

F (1)
s

(β) = F (1)
s

(β0) +
∑

j

c̃j(β)Ej , (4.9)

where the Ej and F (1)
s (β0) are statistically independent. Hence:

cov(F (1)
s

(β1), F
(1)
s

(β2)) = var(F (1)
s

(β0)) +
∑

j

c̃j(β1)c̃j(β2)var(Ej)

≈ var(F (1)
s

(β1)) . (4.10)

The last equality is only approximate, due to the fact that c̃j(β1) 6= 1 for the last few

j ≤ m. In the limit ∆β → 0, the approximation becomes exact. In our data, we have

checked that the approximation is very good, and it is therefore used in the fits.

5. Numerical results for the interfaces

5.1 Square interfaces

First we have analysed the data for the square lattices. In comparison to our previous work

ref. [13], we have results for more than four times larger interface areas. This allows us to

use the interface tension as a fit parameter, while in ref. [13] we had to take it from ref. [7],

where Polyakov-loop correlators were studied.

Furthermore, here we have data for a large range of inverse temperatures β, allowing

us to address the question of corrections to scaling.

As a starting point, let us first discuss the results for β = 0.226102. Note that for

β = 0.226102, the finite temperature phase transition occurs at L0 = 8 [67]. In table 3 we

have summarized our results for the interface free energy F (2)
s

at β = 0.226102. Note that

here we have converted, using eqs. (2.5) (2.8), F (1)
s

, which is the result of our numerical

integration, to F (2)
s

, which is less dependent on L0 and is therefore more suitable for the

comparison with the theoretical predictions. For L0/L fixed, the difference between F (2)
s

and F (1)
s goes down exponentially as the interface area increases. For our numerical results

at β = 0.226102 this difference is larger than the statistical error only for L ≤ 20.

Similarly to ref. [13] we have fitted the data with the ansätze:

F (2)
s

= σL2 + c0 +
c2

σL2
(5.1)

and

F (2)
s = σL2 + c0 +

c2

σL2
+

c4

(σL2)2
, (5.2)

where σ, c0, c2 and c4 are the free parameters of the fits. At this stage of the analysis

we made no attempt to compare with the full NG-prediction which can be obtained from

eq. (3.9).
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L β0 βmax ∆β F (1)
s (β0)

8 0.23607 0.24607 0.0002 4.69471(36)

9 0.23407 0.24607 0.0002 4.95168(41)

10 0.23007 0.24607 0.0002 4.49995(29)

11 0.23007 0.24607 0.0002 4.98701(37)

12 0.22907 0.24607 0.0002 5.12142(37)

13 0.22807 0.24607 0.0002 5.16150(36)

14 0.22707 0.24607 0.0002 5.10299(34)

15 0.22667 0.24607 0.0002 5.26780(35)

16 0.22607 0.24607 0.0001 5.27054(28)

17 0.225802 0.230002 0.00005 5.43001(34)

17 0.230002 0.246202 0.0001

18 0.225302 0.230002 0.00005 5.38722(31)

18 0.230002 0.246202 0.0001

19 0.225002 0.230002 0.00005 5.44569(32)

19 0.230002 0.246202 0.0001

20 0.224902 0.230002 0.00005 5.64529(39)

20 0.230002 0.246202 0.0001

21 0.224702 0.230002 0.00005 5.73892(43)

22 0.224502 0.230002 0.00005 5.80747(41)

23 0.224302 0.230002 0.00005 5.84791(43)

24 0.224002 0.230002 0.00005 5.73910(41)

25 0.223602 0.230002 0.00005 5.46928(59)

26 0.223602 0.230002 0.00005 5.66167(58)

27 0.223602 0.230002 0.00005 5.86440(63)

28 0.223502 0.230002 0.00005 5.91713(63)

29 0.223402 0.226102 0.00005 5.95322(65)

30 0.223402 0.230002 0.00005 6.14879(70)

31 0.223302 0.226102 0.00005 6.16267(70)

32 0.223152 0.230002 0.00005 6.06153(50)

33 0.223052 0.226102 0.00005 6.03701(64)

34 0.222952 0.226102 0.00005 5.99466(65)

35 0.222902 0.226102 0.00005 6.04115(69)

36 0.222852 0.230002 0.00005 6.07957(84)

38 0.222752 0.226102 0.00005 6.13242(73)

40 0.222652 0.230002 0.00005 6.14808(78)

44 0.222552 0.230002 0.00005 6.37175(117)

48 0.222452 0.230002 0.00005 6.52109(100)

52 0.222352 0.226102 0.00005 6.58323(108)

56 0.222252 0.226102 0.00005 6.55408(116)

64 0.222152 0.226102 0.00005 6.77107(123)

Table 1: Summary of the simulations for the square interfaces. For each linear extension L = L1 =

L2 of the interface, the table gives the starting point β0 of the integration, the maximal inverse

temperature βmax that has been simulated, and the step-size ∆β. In the case of L = 17, 18, 19, 20

we have two intervals with different ∆β. The initial value of the integration F (1)
s (β0) has been

computed with the boundary flip algorithm. For details see the text.
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L1 β0 F (1)
s (β0)

24 0.222402 5.19305(69)

28 0.222402 5.53093(93)

32 0.222402 5.87624(96)

36 0.222402 6.21529(116)

40 0.222402 6.54949(141)

44 0.222402 6.87239(137)

48 0.222402 7.19102(163)

Table 2: Summary of runs with asymmetric lattices L1 6= L2, in the same notation as in the

previous table. L0 = 96, L2 = 64, ∆β = 0.00005 and βmax = 0.226102 throughout.

L F (2)
s

18 6.00956(34)

19 6.40442(38)

20 6.81999(45)

21 7.25617(50)

22 7.71334(51)

23 8.19024(56)

24 8.68757(58)

25 9.20809(77)

26 9.74659(78)

27 10.30706(84)

28 10.88919(87)

29 11.48975(92)

30 12.11320(98)

31 12.7558(10)

32 13.4210(11)

33 14.1074(12)

34 14.8145(13)

35 15.5415(13)

36 16.2881(15)

38 17.8477(16)

40 19.4919(17)

44 23.0292(22)

48 26.9095(24)

52 31.1193(28)

56 35.6618(32)

64 45.7769(40)

Table 3: Interface tension F (2)
s for square interfaces at β = 0.226102 as a function of the linear

lattice size L.
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Lmin σ c0 c2 χ2/d.o.f.

18 0.0105283(7) 2.6589(11) -0.209(4) 1.40

19 0.0105273(8) 2.6611(13) -0.219(5) 0.95

20 0.0105267(8) 2.6625(15) -0.226(6) 0.81

21 0.0105264(9) 2.6635(17) -0.230(7) 0.79

22 0.0105262(9) 2.6640(19) -0.234(9) 0.82

23 0.0105257(10) 2.6654(22) -0.242(11) 0.76

24 0.0105255(11) 2.6661(25) -0.246(13) 0.78

25 0.0105262(12) 2.6636(30) -0.229(17) 0.69

26 0.0105259(13) 2.6649(34) -0.239(21) 0.70

Table 4: Fits with ansatz (5.1) for square interfaces at β = 0.226102.

Results of fits with the ansatz (5.1) are given in table 4. Starting from Lmin = 19,

the χ2/d.o.f. is smaller than one. The fit result for c2 is, up to Lmin = 24, decreasing

with increasing Lmin. For Lmin = 24 we get c2 = −0.246(13) which is consistent with the

NG prediction c2 = −0.25. Since the fit result is increasing with Lmin we might consider

c2 = −0.246(13) as an upper bound.

As a check we have performed fits with the ansatz (5.2); the results are summarized

in table 5. The χ2/d.o.f. is below one for all Lmin available. c2 is now increasing with

increasing Lmin. Unfortunately, no stable estimate for c4 is obtained. Higher order correc-

tions seem to play an important rôle. The results c2 = −0.280(38) from Lmin = 20 might

serve as lower bound for c2. Combining the results of the fits with the ansätze (5.1) (5.2)

we might summarize our results as: −0.246(13) > c2 > −0.280(38), which is fully consis-

tent with the theoretical prediction. As our final result for the interface tension we take

σ(0.226102) = 0.0105255(11), obtained from the ansatz (5.1) and Lmin = 24. The compar-

ison with results from the ansatz (5.1) suggests that systematic errors should not be larger

than the statistical error that is quoted.

We have repeated this type of analysis for β = 0.223102, 0.223452, 0.223952, 0.224752,

0.227202, 0.228802, 0.230002, 0.236025, 0.24 and 0.24607. Throughout we find for fits with

the ansatz (5.1) that the numerical result for c2 is decreasing with increasing Lmin, until it

starts to fluctuate. In the case of the fits with ansatz (5.2) we see that c2 is increasing with

increasing Lmin for β < 0.230002; for larger values of β it decreases. For β < 0.230002, our

results are consistent with the theoretical prediction (for the scaling limit) c2 = −0.25. For

larger values of β, deviations become visible: for instance, for β = 0.24, the result from a

fit with ansatz (5.1) and Lmin = 12 is c2 = −0.31(2).

In order to disentangle corrections to scaling from truncation effects in the ansatz, we

have studied c2 as obtained from fits with the ansatz (5.1) and
√

σLmin ≈ 2 fixed. Näıvely

fitting all data for β ≤ 0.24 we get:

c2|Lmin=2/
√

σ = −0.217(4) − 0.98(15)σ , (5.3)

with χ2/d.o.f.= 0.55. In figure 1 we show our data along with the result of this fit. We
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Figure 1: Results for c2 from fits with the ansatz (5.1) and Lmin = 2/
√

σ.

Lmin σ c0 c2 c4 χ2/d.o.f.

18 0.0105246(11) 2.6701(29) -0.299(22) 0.20(5) 0.71

19 0.0105250(12) 2.6689(35) -0.288(29) 0.17(7) 0.72

20 0.0105252(14) 2.6682(42) -0.280(38) 0.14(10) 0.75

21 0.0105252(15) 2.6678(51) -0.275(50) 0.13(15) 0.79

22 0.0105252(15) 2.6679(56) -0.276(60) 0.14(19) 0.84

Table 5: Fits with ansatz (5.2) for square interfaces at β = 0.226102.

conclude that c2 is affected by corrections to scaling. However the corrections are, within

the numerical precision, proportional to σ ∝ ξ−2, i.e. they vanish much faster than ξ−ω,

where ω = 0.821(5) [68] is the exponent of the leading correction to scaling.3 This could be

explained by the fact that the effective interface model only assumes that the symmetries

of the continuous space are restored. The restoration of rotational symmetry is indeed

associated with a correction exponent ω′ ≈ 2 [71].

Next we study the behaviour of c0. In the scaling limit, this quantity should behave

3Field theoretical methods give slightly smaller values: ω = 0.814(18) from the ǫ-expansion and ω =

0.799(11) from perturbation theory in three dimensions fixed [69]. In ref. [70] the value ω = 0.845(10) was

obtained from Monte Carlo simulations of the φ4 model on the lattice.
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Figure 2: The constant C0 as a function of β. The quantity is defined in eq. (5.4) in the text. The

value for β = 0.27604 is taken from ref. [13].

like:

c0(β) = C0 −
1

2
ln[σ(β)] . (5.4)

In figure 2 we have plotted our results for C0 as a function of β.

Within our numerical precision there is no sign of corrections to scaling whatsoever

for β ≤ 0.24607. Only for β = 0.27604, the value is taken from table 5 of ref. [13], a

clear deviation is visible. Unfortunately, we have no clear theoretical understanding why

corrections to scaling should be so small in this quantity.

Results for the interface tension are summarized in table 6. All these results are taken

from fits with the ansatz (5.1) using Lmin ≈ 2.5/
√

σ. As discussed above, for the case

β = 0.221602, systematic errors should be smaller than the statistical error that is quoted.

5.2 Global fit of the data for the interface free energy

In the neighbourhood of the transition, the interface tension behaves as:

σ(β) = σ0t
µ × (1 + atθ + bt + ct2θ + dtθ

′

+ . . .) , (5.5)

where t = β − βc is the reduced temperature. The most accurate result for the inverse

critical temperature is βc = 0.22165455(5) [68]. The critical exponent µ of the interface

tension is related with the critical exponent of the correlation length as µ = 2ν. The most
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accurate values given in the literature are ν = 0.63012(16) [72] from the analysis of high

temperature series expansions, and ν = 0.63020(12) [68] from a finite size scaling analysis

of Monte Carlo data. The same study provides ω = 0.821(5), hence θ = νω = 0.5174(33).

Note that the value of θ′ = 1.05(7) [73] has quite a large uncertainty.

Since 2θ ≈ θ′ ≈ 1, we take as ansatz for the fits:

σ(β) = σ0t
µ × (1 + atθ + bt) . (5.6)

Fitting our new results for σ(β) to this ansatz would require to take into account the cross-

correlations among the values of σ(β) for different values of β. Instead of computing these

cross-correlations, we performed fits for F (2)
s fitting the L and the β dependence at the

same time. The cross-correlations of F (2)
s

at different values of β can be easily obtained as

discussed in subsection 4.3.

Based on the results obtained above, we performed a four parameter fit of the data for

Fs(L, β). To this end, we have used the ansatz:

Fs(L, β) = σ(β)L2 + C0 −
1

2
ln[σ(β)] − 1

4

1

σ(β)L2
, (5.7)

where the interface tension is given by the ansatz (5.6), namely, the free parameters are

σ0, a, b and C0. The critical exponents and the inverse critical temperature are fixed by

their best estimates given in the literature, which are quoted above eq. (5.6).

In the fit, we have used results for the interface free energy at the same values of β as

discussed in the previous subsection: β = 0.223102, 0.223452, 0.223952, 0.224752, 0.227202,

0.228802, 0.230002, 0.236025, 0.24 and 0.24607. Our data would allow to use more values

of β. However, little information would be added this way, since, by construction, the

interface free energies at close-by values of β are highly correlated.

After some experimenting we decided to take our final estimate from a fit with input

data characterized by β ≤ 0.227202, and Fs − ln L ≥ 8, which roughly corresponds to√
σL ≥ 3. In total, 51 data-points satisfy this criterion. The results for the fit parameters

are σ0 = 10.083(8), a = −0.479(26), b = −2.12(19) and C0 = 0.3895(8), where χ2/d.o.f.

= 0.79.

In order to check the L dependence of our result, we have repeated the fit with β ≤
0.227202, and Fs− lnL ≥ 4 (which corresponds roughly to

√
σL ≥ 2.1) and L ≤ Lmax = 44.

This means that the range in L is roughly
√

2 times smaller than that of the previous fit.

In total, 84 data points satisfy this criterion. The results of this fit are σ0 = 10.080(8),

a = −0.471(24), b = −2.20(17) and C0 = 0.3915(4) with χ2/d.o.f. = 0.89.

Next, we changed the β-interval of our fit. We included data that satisfy the criteria

0.224302 ≤ β ≤ 0.233, Fs − ln L ≥ 8, L ≤ Lmax = 44. There are 55 data points that satisfy

these criteria. The results of the fit are σ0 = 10.085(5), a = −0.484(12), b = −2.08(7) and

C0 = 0.3886(6) with χ2/d.o.f. = 0.64.

The results for σ0 are consistent among the three different fits. The differences, possible

within the statistical error, of these results provide an estimate of the systematic error due

to finite-L and large-t corrections that are not taken into account by the ansatz. We arrive
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at:

σ0 = 10.083(8)[26]+22330(βc−0.22165455)+174(ν−0.6302)−0.237(θ−0.5174) (5.8)

and

a = −0.479(26)[120]−55866(βc−0.22165455)−149(ν−0.6302)−2.82(θ−0.5174). (5.9)

The number in the brackets gives the systematic error caused by corrections to the ansatz,

as discussed above. Futhermore, in eqs. (5.8) (5.9) we give the dependence of the result on

the input parameters βc, ν and θ. The dependence of C0 on βc, ν and θ is small enough to

be neglected. We take:

C0 = 0.3895(8) (5.10)

as our final result. The comparison of the three fits done above suggests that the systematic

should not be larger than the statistical error. In table 6 we compare results for σ obtained

from the global fit with the results obtained from analysing single values of β in the previous

subsection. For all values of β the results are consistent.

5.3 Comparison with the literature

Using the definitions t̃ = (β − βc)/βc and σ = σ̃0t̃
µ × (1 + . . .) we get:

σ̃0 = 1.510(4) , (5.11)

where the error is dominated by the uncertainty of ν. Note that this result is perfectly

consistent with (and more precise than) the most accurate result σ̃0 = 1.50(1) given in the

literature [74] using Monte Carlo data of ref. [63]. A more comprehensive list of results for

σ̃0 is given in table 8 of ref. [66].

Also our results for the interface tension at given values of β can be compared with

values given in the literature. Here we only give a small selection of the most recent

results. For more see e.g. ref. [75]. In [7], studying Polyakov-loop correlators, we find

σ = 0.0105241(15) and 0.044023(3) for β = 0.226102 and 0.236025, respectively. These

values are completely consistent with the estimates of the present work. One should note

that they are obtained using a completely different numerical procedure.

In figure 4 of ref. [36] the results σ = 0.004782(6), 0.01011(10), 0.022798(2) and

0.02752(10) for β = 0.224, 0.226, 0.23 and 0.23142 are provided.

These can be compared with σ = 0.004761(2), 0.010228(4), 0.022800(1) and 0.027603(2)

for the same values of β, taken from our global fit. Our values are consistent with those of

ref. [36], except for β = 0.224, where we observe a discrepancy by three and a half standard

deviations.

In ref. [66] the interface tension has been computed in a similar way as in the present

work. Our present results are by approximately a factor of ten more precise than those of

ref. [66]. The results quoted in ref. [66] are consistent with our present estimates within two

standard deviations. The results of ref. [44], using the two-loop approximation to fit the

data, are σ = 0.004778(14), 0.006547(69), 0.009418(61) and 0.014728(40) for β = 0.2240,
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β σ global fit σ

0.223102 0.0026083(6)(7) 0.0026043(53)

0.223452 0.0034176(6)(8) 0.0034152(31)

0.223952 0.0046397(6)(11) 0.0046384(26)

0.224752 0.0067258(6)(16) 0.0067269(17)

0.226102 0.0105254(7)(28) 0.0105255(11)

0.227202 0.0138217(8)(42) 0.0138220(17)

0.228802 0.0188659(13)

0.230002 0.0228068(12)

0.233 0.033114(15)

0.236025 0.044019(9)

0.24 0.058913(5)

0.24607 0.082510(5)

Table 6: Final results for σ at given values of the inverse temperature β. In the second column

we give σ as obtained from our global fit. The statistical error of σ is properly computed, and the

second error quoted is the systematic one. It is estimated from comparing results from different fit

ranges. The third column gives σ obtained from fits with the ansatz (5.1) and Lmin ≈ 2.5/
√

σ. For

the three smallest values of β the global fit provides more accurate results for σ than the fits with

the ansatz (5.1).

0.2246, 0.2258 and 0.2275 to be compared with σ = 0.004761(2), 0.006319(2), 0.009418(61)

and 0.014740(5). While the results for β = 0.2240 and 0.2275 are perfectly consistent, there

is a mismatch by 3.3 and 3.8 standard deviations in the case of β = 0.2246 and 0.2258,

respectively. This is likely due to the fact that for these two values of β only small interface

areas were available and too small areas had been included into the fit.

5.4 Square interfaces: small L

In figure 3 we plot F (2)
s −σL2+0.5 ln(σ) as a function of

√
σL. The numerical values for σ are

taken from table 6. Note that these values of σ are obtained from rather large values of
√

σL

(i.e. are little affected by higher order corrections). In addition to the numerical data for

square interfaces at β = 0.223102 and β = 0.226102 (roughly corresponding to the critical

values of β for which the finite temperature transition occurs for Nt = 16 and Nt = 8,

where Nt denotes the number of lattice spacings in the “inverse temperature” compactified

direction) we give the 2-loop prediction and the full Nambu-Goto result. In the case of the

string predictions we have taken C0 = 0.3895 into account. We observe that, numerically,

for
√

σL ' 1.6 there is very little difference between the two-loop approximation and the

full NG result. By expanding eq. (3.9) we find that the coefficient of the 1/(σL2)2 term

for the full NG result is approximately equal to −0.017. Within the statistical error, the

Monte Carlo results for the two values of β fall on top of the 2-loop and full NG predictions

for
√

σL ' 2.2; note that the 1-loop approximation predicts Fs − σL2 to be constant. For

smaller
√

σL, the data rather abruptly depart from the string prediction. This indicates

that (mainly) not O(1/(σL2)2) but rather higher order corrections are responsible for the
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Figure 3: Comparison of the 2-loop prediction, the full Nambu-Goto result with the data for

square interfaces at β = 0.223102 and β = 0.226102.

deviation. Still down to
√

σL ≈ 1.8 the Monte Carlo data for the two values of β fall

on top of each other within the error-bars. For smaller
√

σL, differences become visible,

indicating corrections to scaling. These scales should be compared with the scale of the

finite temperature transition
√

σNt ≈ 0.81 (for a discussion of this number see section 6

below; the effective string model gives
√

σNt =
√

π/3 ≈ 1.023).

5.5 Asymmetric interfaces

In this subsection we compare our results for rectangular interfaces with the effective string

predictions discussed in section 3. Note that the effective string results have quite a non-

trivial dependence on the aspect ratio u = L2/L1. Therefore this comparison is rather

a stringent test of the theoretical predictions. We have simulated lattices with the linear

sizes L0 = 96 and L2 = 64. In the remaining direction, the linear size assumes the values

L1 = 24, 28, 32, 36, 40 or 48. We use the values of σ and C0 obtained in the section 5.1 as

input for the theoretical predictions. Therefore we have no free parameters to fit, and we

can perform a direct comparison among simulations and theoretical predictions. We have

computed the interface free energy F (2)
s at β = 0.223102, 0.223452, 0.223952 and 0.226102,

corresponding to Nt = 16, 14, 12 and 8. Note that only for β = 0.223102 and L1 = 24 the

difference between F (2)
s and F (1)

s is slightly larger than the statistical error. Our numerical

results, along with the various string predictions are summarized in tables 7 to 10, and

shown in the plots 4 and 5.
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L1 L2 L3 F (1)num
s (β) F (2)num

s (β) F th
s (β), full F th

s (β), 1-l. F th
s (β), 2-l.

24 64 96 6.8887(20) 6.8855(20) 6.7495 6.9974 6.8347

28 64 96 7.6935(21) 7.6929(21) 7.6537 7.7875 7.6821

32 64 96 8.4626(20) 8.4625(20) 8.4518 8.5380 8.4632

36 64 96 9.1996(21) 9.2012 9.2632 9.2062

40 64 96 9.9227(23) 9.9231 9.9713 9.9253

44 64 96 10.6203(23) 10.6278 10.6674 10.6288

48 64 96 11.3138(25) 11.3209 11.3548 11.3213

Table 7: Free energy of rectangular interfaces, at β = 0.223102. The value of F (2)num
s (β) is reported

only when different with respect to F (1)num
s (β). The sixth, seventh and eighth column display,

respectively, the all-loop (full), one-loop (1-l.) and two-loop (2-l.) prediction of the Nambu-Goto

string model.

L1 L2 L3 F (1)num
s (β) F (2)num

s (β) F th
s (β), full F th

s (β), 1-l. F th
s (β), 2-l.

24 64 96 7.9988(22) 7.9985(22) 7.9397 8.1043 7.9802

28 64 96 9.0175(23) 9.0066 9.1016 9.0212

32 64 96 9.9965(22) 9.9962 10.0594 10.0023

36 64 96 10.9407(23) 10.9455 10.9917 10.9482

40 64 96 11.8682(25) 11.8707 11.9070 11.8719

44 64 96 12.7728(25) 12.7803 12.8102 12.7808

48 64 96 13.6734(27) 13.6791 13.7049 13.6793

Table 8: Same as in table 7, but at β = 0.223452.

L1 L2 L3 F (2)num

s
(β) F th

s
(β), full F th

s
(β), 1-l. F th

s
(β), 2-l.

24 64 96 9.7374(23) 9.7111 9.8216 9.7302

28 64 96 11.0702(24) 11.0653 11.1318 11.0725

32 64 96 12.3602(24) 12.3572 12.4024 12.3603

36 64 96 13.6150(25) 13.6141 13.6476 13.6155

40 64 96 14.8520(27) 14.8492 14.8757 14.8499

44 64 96 16.0688(27) 16.0699 16.0918 16.0701

48 64 96 17.2816(29) 17.2804 17.2993 17.2804

Table 9: Same as in table 7, but at β = 0.223952.

Since we have fixed values of L0, L1 and L2, our data do not allow for a check of scaling

corrections. Instead, we assume that they are of similar size as in the case of the square

interfaces and therefore are small for the values of β that we consider here.

Similar to the case of square interfaces, the numerical values of the full NG result

and the two-loop approximation are very close down to
√

σL1 ≈ 1.8, i.e. they can not be

discriminated, given the accuracy of our Monte Carlo results for the Ising model.

In the range
√

σL1 ' 1.8, the Monte Carlo data perfectly agree with the full NG
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L1 L2 L3 F (2)num
s (β) F th

s (β), full F th
s (β), 1-l. F th

s (β), 2-l.

24 64 96 18.4131(26) 18.4121 18.4555 18.4152

28 64 96 21.2414(27) 21.2450 21.2724 21.2463

32 64 96 24.0310(27) 24.0306 24.0497 24.0312

36 64 96 26.7859(28) 26.7873 26.8017 26.7875

40 64 96 29.5271(30) 29.5250 29.5365 29.5251

44 64 96 32.2449(31) 32.2498 32.2594 32.2498

48 64 96 34.9623(33) 34.9653 34.9736 34.9653

Table 10: Same as in table 7, but at β = 0.226102.

result and the two-loop approximation. Up to our largest values of
√

σL1, there is a clear

discrimination against the 1-loop approximation.

For
√

σL1 < 1.8 the Monte Carlo data are more compatible with the 2-loop approxi-

mation than with the full NG result.

In the case of the Polyakov-loop correlator, for large distances of the Polyakov-loops,

similar observations were made with respect to a finite temperature; i.e. for the direction

with periodic boundary conditions [3 – 12]. Even for
√

σL1 close to
√

σ/Tc, the numerical

data follow closely the 2-loop prediction.

In our opinion, this behaviour at very small distances is a mere coincidence, related to

the fact that the 2-loop approximation gives (by chance) the same critical exponent as the

2D Ising universality class and also the value for Tc/
√

σ is very close to the one of the Z2

gauge theory.

6. Universal amplitude ratios

In this section we compute universal amplitude ratios of the interface tension and the

correlation length. Generically, these amplitude ratios have the form:

R = lim
t→0

σ(t)ξ(t)2 , (6.1)

where t is the reduced temperature. In particular, we shall consider the second moment

correlation length in the high temperature and the low temperature phase and the ex-

ponential correlation length (i.e. the inverse of the lightest mass) in the low temperature

phase.

6.1 The second moment correlation length in the high temperature phase

The second moment correlation length is defined by:

ξ2
2nd =

µ

2dχ
, (6.2)

where:

µ =
∑

x

x2〈s0sx〉 (6.3)
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Figure 4: In the two figures we give F (2)
s − σL1L2 as a function of

√
σL1 for β = 0.223102 and

β = 0.223452. In all cases L0 = 96 and L2 = 64. Note that in the case of the Monte Carlo results

the statistical error is smaller than the symbol (circle). The 1-loop, 2-loop and full NG predictions

are given as solid black, red and blue lines, respectively.

and χ is the magnetic susceptibility:

χ =
∑

x

〈s0sx〉 . (6.4)

The coefficients of the high temperature series for µ and χ up to O(β25) are reported in

ref. [76]. Using these, we computed the coefficients for ξ2
2nd

. Quite a straightforward method
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Figure 5: Same as in the previous figure, but for β = 0.223952 and β = 0.226102. For β = 0.226102,

the 2-loop and full NG predictions fall (within the resolution of our plot) on top of each other.

is the so-called matching method (see e.g. [77]): We start from a power-law ansatz like:

ξ2
2nd =f2

2nd,+(βc−β)−2ν [1+a(βc−β)θ+b(βc−β)+c(βc−β)2θ+d(βc−β)θ2 +. . .], (6.5)

where we fix βc = 0.22165455, ν = 0.6302, θ = 0.5174 and γ = 1.2372, following the Monte

Carlo results of ref. [68]. Now the ansatz (6.5) is Taylor-expanded in β. The remaining free

parameters of the ansatz (6.5) can then be determined by matching the coefficients with
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those of the exact result for the HT-series for ξ2
2nd. As our final result for the amplitude,

we obtain:

f2
2nd,+

= 0.038369(13)× [ 1 + 1024(βc − 0.22165455) (6.6)

−17(ν − 0.6302) − 0.0206(θ − 0.5174)].

Combining the results of eqs. (5.8) (6.6), we get:

R+ = 0.3869(14) + 1250(βc − 0.22165455) (6.7)

+0.11(ν − 0.6302) − 0.017(θ − 0.5174).

Inserting the errors of the input parameters, we arrive at:

R+ = 0.387(2) (6.8)

as our final estimate. The most precise theoretical estimate given in the literature R+ =

0.377(11) [74, 78] is fully consistent with ours. Similar to our analysis, this result is derived

from HT-series of the correlation length and Monte Carlo data of the interface tension.

Experimental measurements of this quantity are consistent with but less precise than

our estimate; for instance, R+ = 0.41(4) was obtained from the study of a cyclohexane-

aniline mixture in [79].

6.2 The correlation length in the low temperature phase

Here we use the Monte Carlo results for the second moment correlation length ξ2nd obtained

in ref. [80] and the exponential correlation length from refs. [81, 82] to compute the combi-

nation σ(t)ξ(t)2 at finite values of t. With our present results for the interface tension, the

error of the combination is completely dominated by the error of the correlation length.

We fit the combination with the ansatz:

σξ2 = R− + c σω/2 , (6.9)

using ω = 0.821(5) [68]. In the case of the second moment correlation length we take our

final estimate from a fit that includes β ≤ 0.2275. The dependence of the result on the

value of ω is rather small and can be neglected compared with the statistical error of R−.

In the case of the exponential correlation length our final estimate is obtained from data

with β ≤ 0.23142 where, again, the error due to the uncertainty of ω can be ignored. The

values of the interface tension, the correlation length and the amplitude combination R−
as well as the final results of our fits are summarized in table 11.

For comparison, table 12 reports previous estimates obtained for the Ising model in

refs. [66, 74, 81, 56, 83].

Also field-theoretical predictions for the universal constant R are given in the literature:

• From the ǫ-expansion: Brézin and Feng [84] computed R from the ǫ-expansion. Their

result reads:

1

4πR
=

2π

3
ǫ

[

1 − ǫ

(

47

54
+

1

2
ln(4π) − 1

2
γ − 5π

√
3

18

)]

+ O(ǫ3) , (6.10)
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β σ ξexp σξ2
exp ξ2nd σξ2

2nd

0.23910 0.055415 1.296(3) 0.0931(4) 1.2335(15) 0.0843(2)

0.23142 0.027601 1.868(3)∗ 0.0964(3) 1.8045(21) 0.0899(2)

0.22750 0.014740 2.593(3)∗ 0.0991(2) 2.5114(31) 0.0930(2)

0.22600 0.010228 3.135(9) 0.1005(6) 3.0340(32) 0.0942(2)

0.22400 0.004761 4.64(3) 0.1025(13) 4.509(6) 0.0968(3)

0.22311 0.002626 - - 6.093(9) 0.0975(3)

β → βc 0.1084(11) 0.1024(5)

Table 11: The values for the interface tension are taken from our global fit, the values for the

exponential correlation length are taken from ref. [81] and in the cases marked by ∗ the results of

ref. [81] and ref. [82] are averaged. The numbers for the second moment correlation length are all

taken from ref. [80]. In the last row we give the extrapolation to the scaling limit. For details see

the text.

year authors(s) ref. R−
1992 Klessinger and Münster [83] 0.090(3)

1993 Hasenbusch and Pinn [66] 0.090(5)

1996 Zinn and Fisher [74] 0.096(2)∗

1996 Agostini et al. [81] 0.1056(19)

1997 Hasenbusch and Pinn [56] 0.1040(8)∗

Table 12: Comparison of a number of estimates for R− taken from the literature. The estimate

of Zinn and Fisher is based on data of [66]. Agostini et al. used the true instead of the second

moment correlation length. The result marked with a star refer to the second moment correlation

length, while the others refer to the exponential one.

with γ = 0.5772 . . .. Their numerical evaluation for ǫ = 1 gives results in the range

from R ≈ 0.051 up to R ≈ 0.057. Note that this result deviates by about a factor of

1/2 from ours.

• From perturbation theory in 3D fixed: The study of interfaces using perturbation

theory in three dimensions was pioneered by Münster [85]. The starting point of this

calculation is the classical solution (i.e. the configuration with minimal action) of a

system with fixed boundary conditions in 3-direction. At one boundary, the field is

fixed to the negative minimum, and at the other, to the positive minimum of the

potential. Then, fluctuations around this classical solution are studied. In the more

recent paper [86], this analysis was extended to two loops. Their result4 is:

R =
2

u∗
R

[

1 + σ1l
u∗

R

4π
+

(

σ2l
u∗

R

4π

)2

+ O(u∗3
R )

]

, (6.11)

4Note that they use the second moment definition of the correlation length.
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with:

σ1l =
1

4

(

3 +
3

4
log 3

)

− 37

32
= −0.2002602 (6.12)

and:

σ2l = −0.0076(8) . (6.13)

Using Padé and Padé-Borel analysis, with u∗
R = 14.3(1), they obtain:

R = 0.1065(9) (6.14)

as their final result. Note that the quoted error is dominated by the error of u∗
R. At

this point, one should also note the principle problems related with the definition of

u∗
R, as discussed in ref. [82].

Our value σξ2
exp = 0.1084(11) corresponds to m0++/

√
σ = 3.037(15). This value for

the Z2 gauge theory might be compared with 4.718(43), 4.329(41), 4.236(50) and 4.184(55)

for the SU(2), SU(3), SU(4) and SU(5) gauge theories in 2+1 dimensions, respectively [87].

Note that there are clear differences between the results for the different gauge groups,

indicating that the 0++ glueball state probes short distances, which can not be described

by an effective string. This is in contrast to higher exited glueball states, where much less

dependence on the gauge group is found [81, 87].

In a similar way, we have analysed σ/T 2
c , using the results of ref. [67] for Tc. We arrive

at σ/T 2
c = 0.656(2) or Tc/

√
σ = 1.235(2), where we have included data with (1/Tc) ≥ 8

into the fit. Again the error is completely dominated by the error of Tc. Our new result

can be compared with our previous estimate Tc/
√

σ = 1.2216(24) [67], (where we did not

take into account scaling corrections, and had the interface tension only available up to

1/Tc = 12) and Tc/
√

σ = 1.17(10) [88].

Our result is clearly different from the value
√

3/π = 0.977 . . . obtained from the

effective string picture [54].

Finally we might compare with SU(N) gauge theories in 2 + 1 dimensions:

In the literature one finds Tc/
√

σ = 1.12(1), 0.98(2) for N = 2, 3 [89] and Tc/
√

σ = 0.892(3),

0.879(3), 0.877(3) for N = 4, 5, 6 [90], respectively. The results for N = 4, 5, 6 are read

off from figure 4 of ref. [90]. Note that they are taken for Nt = 3 and no continuum

extrapolation is performed.

Similar to the case of m0++/
√

σ we observe a clear dependence on the gauge group.

Nevertheless, it is quite remarkable that the simple string picture gives the correct value

with less than 30% deviation.

7. Conclusions

In this paper, we have presented the results of an accurate numerical study of the interface

free energy in the three-dimensional Ising model. The motivation for this study was twofold:

• To investigate the dynamics of a fluctuating interface with periodic boundary condi-

tions only, avoiding non-trivial effects of Dirichlet boundary conditions.
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• To obtain high precision estimates of the interface/string tension in a large range of

the inverse temperature, allowing us to compute the scaling limit of several universal

amplitude ratios with high precision.

To this end, we have determined the interface free energy by numerical integration of

the interface energy over the inverse temperature β. The interface energy is given by the

difference of the internal energies in a system with periodic and a system with antiperiodic

boundary conditions in one direction. The interface free energy at the starting point of

the integration was measured using the boundary-flip algorithm. For our simulations we

have used efficient combinations of cluster and multispin coded Metropolis updates. This

approach has allowed us to strongly improve the precision of the numerical results, as

compared to analogous studies presented in the literature. In particular, the large range

of β-values that we have studied gives us a good control over corrections to scaling (or, in

the language of lattice gauge theory: finite a effects). It turns out that, in the regime not

too close to the finite temperature transition, the interface free energy Fs(
√

σL1,
√

σL2)

approaches its continuum limit quite fast, characterized by a correction exponent ω′ ≈ 2.

This observation might be explained by the fact that the effective interface model only

assumes the restoration of the symmetries of the continuous space-time, which indeed

comes with an exponent ω′ ≈ 2.

The level of precision in the Monte Carlo data, as well as the accurate control of the

systematic errors, enables us to clearly resolve the fine string-dynamics effects that we were

seeking after: In a setting in which the possible distortions due to boundary effects are

completely absent, and all systematic effects are under control, the Nambu-Goto model

yields an accurate description of the data up to the second loop order (only).

Comparing the 2-loop approximation with the full NG prediction one has to notice

that down to rather small scales, such as
√

σL ≈ 1.8, the two string results can not be

discriminated at the level of the accuracy of our Monte Carlo data. Nevertheless, one might

interpret our Monte Carlo data as a confirmation of the full NG prediction in the sense

that e.g. 1/(σA)2 corrections have indeed a small amplitude.

Going close to the finite temperature transition, which occurs at
√

σNt = 0.810(2)

as discussed in section 6, it does not come as too big a surprise that the data for the

Ising model are not well fitted by the full NG prediction: The full NG predicts mean-field

behaviour of the transition, while following the Svetitsky-Yaffe conjecture [55] (numerically

confirmed e.g. in [67]) it should be the behaviour of the 2D Ising universality class.

This behaviour is quite similar to that of interfaces with a cylinder-like geometry, with

periodic boundary conditions in the short direction (see e.g. ref. [12]), thus confirming the

assumption that a common effective string description underlies the confining flux tube

dynamics in different physical settings.

These observations indicate that the all-order prediction of the Nambu-Goto effective

string action (at least as it is treated in the approximation in which the rôle of the Liouville

field is neglected) does not show a quantitative agreement with the data for an interface

in the three-dimensional Ising model that goes beyond the two-loop approximation. This

fact is — as discussed above — consistent with the Polchinski-Strominger model.
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The apparent failure of the two-loop prediction with respect to Dirichlet boundary

conditions (see e.g. ref. [7]), as they arise via duality from the Polyakov-loop correlator

requires further investigation. At least the present work confirms that the problem is

intrinsically related with the boundary conditions. A possible explanation is that the

Dirichlet boundary conditions probe short distance properties of the theory, which are not

captured by the effective string model.

Using our new data for the interface tension along with the analysis of the high tem-

perature series expansion of the second moment correlation length, we have computed the

universal amplitude ratio R+ = 0.387(2). This estimate is more precise than any other the-

oretical estimate given in the literature. This estimate can be compared with experimental

results e.g. for binary mixtures. In ref. [79] R+ = 0.41(4) was found, which is consistent

but less precise than our result.

Finally, we have also updated the results for the mass m0++/
√

σ of the 0++ glue-

ball in units of the square root of the string tension and the critical temperature of the

deconfinement transition Tc/
√

σ.

The comparison with other gauge theories in 2 + 1 dimensions shows a variation of

these quantities by roughly 50%, indicating that these quantities can not be described only

by an effective string picture, but that also microscopic features of the gauge theory have

to be taken into account.
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A. Integration schemes

One of the simplest methods given in textbooks is the trapezoid rule:

∫ xN

x0

f(x)dx = h

[

1

2
f0 + f1 + f2 + . . . + fN−1 +

1

2
fN

]

+ O(N−2) , (A.1)

where h = (xN−x0)/N , fi = f(xi) and xi = x0+ih. There are rules with faster convergence

as N → ∞, like the well-known Simpson rule:

∫ xN

x0

f(x)dx = h

[

1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4 + . . .

+
4

3
fN−3 +

2

3
fN−2 +

4

3
fN−1 +

1

3
fN

]

+ O(N−4) . (A.2)

However, the disadvantage of the Simpson rule is that fi is not constant in the middle of

the interval: this implies a loss of precision in the final result. Furthermore, N has to be

even.
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A better-suited rule that avoids these problems is given by (see e.g. eq. (4.1.14) in

ref. [91]):

∫ xN

x0

f(x)dx = h

[

3

8
f0 +

7

6
f1 +

23

24
f2 + f3 + f4 + . . .

+fN−3 +
23

24
fN−2 +

7

6
fN−1 +

3

8
fN

]

+ O(N−4). (A.3)

A similar and maybe slightly better rule (see e.g. eq. (35) in ref. [92]) is given by:

∫ xN

x0

f(x)dx = h

[

17

48
f0 +

59

48
f1 +

43

48
f2 +

49

48
f3 + f4 + . . .

+fN−4+
49

48
fN−3+

43

48
fN−2+

59

48
fN−1+

17

48
fN

]

+O(N−4). (A.4)
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